The extended least squares criterion: minimization algorithms and applications

نویسنده

  • Arie Yeredor
چکیده

The least squares (LS) estimation criterion on one hand, and the total LS (TLS), constrained TLS (CTLS) and structured TLS (STLS) criteria on the other hand, can be viewed as opposite limiting cases of a more general criterion, which we term “Extended LS” (XLS). The XLS criterion distinguishes measurement errors from modeling errors by properly weighting and balancing the two error sources. In the context of certain models (termed “pseudo-linear”), we derive two iterative algorithms for minimizing the XLS criterion: One is a straightforward “alternating coordinates” minimization, and the other is an extension of an existing CTLS algorithm. The algorithms exhibit different tradeoffs between convergence rate, computational load, and accuracy. The XLS criterion can be applied to popular estimation problems, such as identifying an autoregressive (AR) with exogenous noise (ARX) system from noisy input/output measurements or estimating the parameters of an AR process from noisy measurements. We demonstrate the convergence properties and performance of the algorithms with examples of the latter.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the performance of algorithms for the minimization of l1-penalized functionals

The problem of assessing the performance of algorithms used for the minimization of an l1-penalized least-squares functional, for a range of penalty parameters, is investigated. A criterion that uses the idea of ‘approximation isochrones’ is introduced. Five different iterative minimization algorithms are tested and compared, as well as two warm-start strategies. Both well-conditioned and ill-c...

متن کامل

On the performance of algorithms used for the minimization of l1-penalized functionals

The problem of assessing the performance of algorithms used for the minimization of an l1-penalized least-squares functional, for a range of penalization parameters, is investigated. A criterion that uses the idea of ‘approximation isochrones’ is introduced.

متن کامل

Exact and approximate solutions of fuzzy LR linear systems: New algorithms using a least squares model and the ABS approach

We present a methodology for characterization and an approach for computing the solutions of fuzzy linear systems with LR fuzzy variables. As solutions, notions of exact and approximate solutions are considered. We transform the fuzzy linear system into a corresponding linear crisp system and a constrained least squares problem. If the corresponding crisp system is incompatible, then the fuzzy ...

متن کامل

A Projected Alternating Least square Approach for Computation of Nonnegative Matrix Factorization

Nonnegative matrix factorization (NMF) is a common method in data mining that have been used in different applications as a dimension reduction, classification or clustering method. Methods in alternating least square (ALS) approach usually used to solve this non-convex minimization problem.  At each step of ALS algorithms two convex least square problems should be solved, which causes high com...

متن کامل

AR order selection in the case when the model parameters are estimated by forgetting factor least-squares algorithms

During the last decades, the use of information theoretic criteria (ITC) for selecting the order of autoregressive (AR) models has increased constantly. Because the ITC are derived under the strong assumption that the measured signals are stationary, it is not straightforward to employ them in combination with the forgetting factor least-squares algorithms. In the previous literature, the attem...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IEEE Trans. Signal Processing

دوره 49  شماره 

صفحات  -

تاریخ انتشار 2001